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Abstract—The Gaussian fading channel is studied, in which
the channel from the transmitter to the receiver is corrupted by
a multiplicative fading coefficient H and an additive Gaussian
random noise. It is assumed that the channel is experiencing
block fading, and the transmitter does not know the channel
state information (CSI). The receiver is assumed to have full
knowledge of the CSI. If the channel state is better, then more
information is required to be decoded by the receiver, and if the
channel state is worse, more information is required to be secure
from the receiver. Furthermore, the information intended to be
decoded by the receiver with a better state (e.g., |H| ≥ |h0|) is
required to be secure from the receiver if it has a state worse
than |h0| by ∆ (i.e., |H| ≤ |h0| − ∆), which is referred to as
secrecy outside a bounded range. A (layered) broadcast approach
is studied for this problem, which views the fading channel as
a degraded broadcast channel with a number of receivers each
experiencing a different fading coefficient. The achievable scheme
designates one superposition layer to each message with binning
employed to protect all upper-layer messages from lower-layer
receivers. Furthermore, the scheme allows adjacent layers to
share rates so that part of the rate of each message can be
shared with its upper-layer messages to enlarge the rate region.
The achievable secrecy rate region via the broadcast approach is
characterized. The developed scheme can adapt the transmission
rate to the actual unknown channel state without exploiting the
CSI at the transmitter.

I. INTRODUCTION

In wireless networks, signals are transmitted via the open
medium of free space, and hence can be easily eavesdropped
upon by any receiver within transmission range. The major
challenge of secure wireless communication is due to this
broadcast nature. To address this challenge, Wyner proposed
a physical layer approach [1] which exploits physical channel
randomness to achieve secure communication. This approach
can significantly reduce requirements on the infrastructure
and improve communication flexibility and dynamics without
inherent use of secret keys. This approach was first introduced
via the wiretap channel [1], in which a transmitter has one
message intended for a legitimate receiver and would like to
keep this message secure from an eavesdropper. This model
was further generalized to a more general broadcast scenario
by Csiszár and Köner [2], in which one more common
message is required to be decoded by both the legitimate
receiver and the eavesdropper. More recently, there has been a
surge in interest in applying this approach to wireless networks
(see [3]–[5] for overviews of recent works).

Successful implementation of the physical layer method
depends crucially on the transmitter’s knowledge of the chan-
nel state information (CSI) since it exploits the statistical
channel randomness to achieve secure communication. Pre-
vious studies mostly focused on the scenarios in which the
CSI is available to the transmitter with a few exceptions, e.g.,
[6]–[9]. However, in wireless networks, the CSI might not be
available to the transmitter due to lack of feedback resources.
More generally, for security reasons, the eavesdroppers do not
intend to feed their channel state back to the transmitters.

A reasonable approach to model the channel state un-
certainty is through compound wiretap channel [10]–[13],
and arbitrary varying channel [14], [15]. These approaches
guarantee secure communication under any possible channel
states, in particular under the worst channel state. However,
in order to guarantee secure communication under the worst
channel state, the channel resources are not used efficiently if
the actual channel state is good. Thus, it is appealing to design
secure transmission schemes that do not exploit the CSI but
can still adapt to the actual unknown channel state and achieve
a secrecy rate as high as the actual channel state permits.

A broadcast approach was introduced in [16] for wireless
communication with channel state uncertainty but without
secrecy constraint, and was then generalized to the multiple-
input multiple-output (MIMO) case in [17]. This approach
facilitates to adapt the transmission rate to the actual unknown
channel state without having any feedback link from the
receiver to estimate the CSI. The basic idea is to view the
fading channel as a degraded Gaussian broadcast channel with
a continuum of receivers each experiencing a different fading
coefficient. The transmitter then splits the entire message
into a number of components with each component being
transmitted via one layer of input. These layers of inputs
are then combined into one channel input using superposition
encoding. The receiver decodes the layers one after another via
successive cancellation. The realization of the channel state
determines up to which layer the receiver can decode. This
broadcast approach was further employed to study the problem
of fading wiretap channel in which both the legitimate and the
eavesdropping channels are corrupted by multiplicative fading
coefficients [18]. The average secrecy rate that can be achieved
via the broadcast approach was derived.

In this paper, we consider a Gaussian fading channel,
in which a transmitter sends information to a receiver. The
channel is corrupted by an additive complex Gaussian noise



and random multiplicative fading gain coefficient. The status
of the receiver is determined by its channel state. If the channel
state is better, then more information is required to be decoded
by the receiver. Meanwhile, if the channel state is worse, more
information is required to be kept secure from the receiver.
In this model, the receiver plays the role of both legitimate
receiver and eavesdropper, and the amount of information it
can decode and is kept secure depends on its channel state.
Furthermore, the information intended to be decoded by the
receiver if it has state h0 should be kept secure from the
receiver if it has state worse than h0 by ∆, i.e. |H| < |h0|−∆,
for all |h0| ≥ ∆, which is referred to as secrecy outside of a
bounded range [19].

We generalize the broadcast approach in [16] and [17] to
the model considered in this paper. We view the fading channel
as a degraded broadcast channel with layered decoding and
layered secrecy [20], [21] and with secrecy outside a bounded
range [19]. We split the entire message into a number of
layers with each component being transmitted via one layer
of superposition coding. We further employ binning within
each layer. These layers are then superposed one on another
by superposition coding. Furthermore, the scheme allows
adjacent layers to share rates so that part of the rate of
each message can be shared with its upper-layer messages
to enlarge the achievable region. This transmission strategy
can adapt the rate to the actual unknown channel state, i.e.,
if the channel state is better, more layers of messages can be
decoded, and less layers of messages are kept secure.

This paper is organized as follows. In Section II, we
introduce the problem model of the fading channel with
secrecy outside a bounded range. In Section III, we first
present the results for the case with discrete channel states,
and then generalize the results to the case with continuous
channel states. In Section IV, we conclude the paper.

II. PROBLEM MODEL

We consider a fading channel, in which a transmitter
sends information to a receiver. The channel input-output
relationship for one channel use is given by

Y = HX + U, (1)

where Y is the channel output, X is the channel input, H is
random fading gain coefficient, and U is complex Gaussian
random noise with zero mean and unit variance.

The fading gain coefficient H is assumed to experience
block fading, i.e., it is constant within a coding block and
changes ergodically across blocks. The block length is as-
sumed to be sufficiently large such that one codeword can be
successfully transmitted if properly constructed. The channel
input is subject to an average power constraint P over each
block:

1

n

n∑
i=1

E[|Xi|2] ≤ P, (2)

where i denotes the symbol time (i.e., channel use) index,
and n is the block length. The noise variable U is assumed to
be independent and identically distributed (i.i.d.) per channel
use within each block. The instantaneous CSI is assumed to

be unknown to the transmitter, and known to the receiver.
The transmitted message is required to be decoded within one
block, i.e., satisfies the delay constraint, and coding across
blocks is not allowed.

It is required that more information is decoded by the
receiver if it has a better channel state, and more information is
kept secure from the receiver if it has a worse channel state.
It is further required that the secrecy is outside a bounded
range [19]. More specifically, the information intended to be
decoded by the receiver with channel state h0 should be kept
secure from the receiver with channel state worse than h0 by
∆, i.e., |H| < |h0| − ∆, for all |h0| ≥ ∆. Here ∆ is the
secrecy range.

More specifically, we consider two scenarios. In the first
scenario, the receiver has a finite number of channel states,
i.e., H can take on one of H1, . . . ,HL values, where |H1| <
· · · < |HL|. It is assumed that the message intended to be
decoded by the receiver with channel state Hk should be kept
secure from the receiver with channel state worse than Hk by
two levels of channel quality, i.e., |H| ≤ |Hk−2|, and ∆ is
two levels of channel quality. This model is then generalized
to the case in which ∆ is arbitrary m levels of channel quality,
where m ≥ 1, i.e., the message intended to be decoded by the
receiver with channel state Hk should be kept secure from the
receiver with channel state worse than Hk−m.

In the second scenario, the fading coefficient H can take
continuous values. The message at the transmitter is divided
into infinite number of layers. It is required that the layers of
the messages intended to be decoded by the receiver if it has a
better state than h0 is required to be secure from the receiver
if it has a state worse than h0 by ∆, i.e., |H| < |h0| −∆.

A message W is said to be decoded at the receiver if the
probability of decoding error is asymptotically small,

Pne (W ) = P (Ŵ 6= W ) ≤ nεn, (3)

where Ŵ is the decoded message at the receiver, and εn → 0
as n → ∞, The measure of security is based on the
equivocation rate of message W at the receiver,

1

n
H(W |Y nk ),

where Y nk is the channel output at the receiver with state Hk.
The message W is said to be secure from the receiver with
state Hk if

1

n
H(W |Y nk ) ≥ 1

n
H(W )− εn, (4)

where εn → 0 as n→∞.

III. MAIN RESULTS

In this section, we present our main results. We first
consider the scenario in which the receiver has a finite number
of channel states. We then generalize our results to the general
case with continuous channel states.



A. Discrete Channel States

Before we introduce our results for the fading channel, we
first review the results for the problem of degraded broadcast
channel with secrecy outside a bounded range in [19].

In this problem, a L-receiver degraded broadcast channel
is considered. A transmitter sends information to L receivers
through a discrete memoryless channel. The channel is as-
sumed to be degraded, i.e., the following Markov chain
condition holds:

X → YL → YL−1 → · · · → Y1. (5)

Hence, the channel quality gradually degrades from receiver L
to receiver 1. There are in total L messages W1,W2, . . . ,WL

intended for L receivers with the following decoding and se-
crecy requirements. Receiver k is required to decode messages
W1,W2, . . . ,Wk, for k = 1, 2, . . . , L, and to be kept secure
of Wk+2, . . . ,WL, for k = 1, . . . , L−2. For this problem, the
secrecy capacity region is characterized as follows:

Proposition 1. [19, Theorem 1] Consider the L-receiver
degraded broadcast channel with secrecy outside a bounded
range. The secrecy capacity region consists of rate tuples
(R1, R2, . . . , RL) satisfying

R1 ≤ I(U1;Y1), (6a)
k∑
j=2

Rj ≤
k∑
j=2

I(Uj ;Yj |Uj−1), for 2 ≤ k ≤ L, (6b)

k∑
j=l

Rj ≤

 k∑
j=l−1

I(Uj ;Yj |Uj−1)

− I(Uk;Yl−2|Ul−2),

for 3 ≤ l ≤ k ≤ L, (6c)

for some PU1...UK
satisfying the following Markov chain

condition:

U1 → U2 → · · · → UK → YK → · · · → Y2 → Y1. (7)

By the broadcast approach, our problem of fading channel
can be viewed as degraded broadcast channel with L receivers,
with each receiver k experiencing the fading coefficient Hk,
for 1 ≤ k ≤ L. The transmitter splits the entire message into
L submessages, W1, . . . ,WL. By the decoding and secrecy
requirements, message k should be decoded by receiver k,
and should be kept secure from receiver k − 2. Due to
the degradedness condition, receiver k can decode messages
W1, . . . ,Wk and is kept secure of message Wk+2, . . . ,WL.
For each message i, the transmitter assigns power Pi, such
that

∑L
i=1 Pi ≤ P .

The rate tuple (R1, . . . , RL) is achievable if there ex-
ists a coding scheme that encodes W1, . . . ,WL at the rate
(R1, . . . , RL) such that for k = 1, . . . , L, the receiver can
decode Wk with small probability of error if its channel state
is Hk, and Wk+2, . . . ,WL are kept secure from it.

Via the broadcast approach, this fading channel is reformu-
lated into a degraded broadcast channel with layered decoding
and layered secrecy and with secrecy outside a bounded range
as in [19]. The following theorem characterizes the secrecy
rate tuples that can be achieved.

Theorem 1. For the fading channel with the receiver has
L fading states H1, . . . ,HL, where H1 < · · · < HL, the
following secrecy rate tuples (R1, . . . , RL) are achievable:

R1 ≤ log

(
1 +

|H1|2P1

|H1|2
∑L
i=2 Pi + 1

)
, (8a)

k∑
j=2

Rj ≤
k∑
j=2

log

(
1 +

|Hj |2Pj
1 + |Hj |2

∑L
i=j+1 Pi

)
,

for 2 ≤ k ≤ L, (8b)
k∑
j=`

Rj ≤

 k∑
j=`−1

log

(
1 +

|Hj |2Pj
1 + |Hj |2

∑L
i=j+1 Pi

)
− log

(
1 +

|H`−2|2
∑k
i=`−1 Pi

1 + |H`−2|2
∑L
i=k+1 Pi

)
,

for 3 ≤ ` ≤ k ≤ L. (8c)

In the above region, the bounds (8a) and (8b) are due to
the decoding requirements, i.e., the receiver with state Hk

should decode messages W1, . . . ,Wk, for 1 ≤ k ≤ L. The
bounds (8c) are due to the secrecy requirements, i.e., messages
W`, . . . ,Wk need to be kept secure from the receiver with
state H`−2 for 3 ≤ l ≤ k ≤ L. Furthermore, the bounds (8c)
can be written as

k∑
j=`

Rj ≤
k∑

j=`−1

[
log

(
1 +

|Hj |2Pj
1 + |Hj |2

∑L
i=j+1 Pi

)

− log

(
1 +

|H`−2|2Pj
1 + |H`−2|2

∑L
i=j+1 Pi

)]
,

∆
=

k∑
j=`−1

Aj , (9)

which has a clear intuitive interpretation. The term Aj is
corresponding to the rate of message Wj that can be secure
from the receiver with state H`−2 given the knowledge of
W1, . . . ,Wj−1. Those rates Aj for ` − 1 ≤ j ≤ k can all
be counted towards

∑k
j=`Rj in accordance to the secrecy

requirement of keeping W`, . . . ,Wk secure from the receiver
with state H`−2.

Due to the degradedness condition, the total rate satisfying
the secrecy constraints that is achievable when the receiver is
at channel state H` is

∑`
j=1Rj . Then the average achievable

secrecy rate is
L∑
`=1

P (H`)
∑̀
j=1

Rj

 .
This average secrecy rate can be further optimized with respect
to the power allocation P` subject to a power constraint∑L
`=1 P` ≤ P .

A very important property of our designed scheme is
that it is adaptive to the actual unknown channel state. More
specifically, if the channel state is better, then more messages
can be decoded, and less messages are kept secure from



the receiver. This adaptive property does not require the
transmitter to know the instantaneous CSI.

The achievable scheme follows from the one in [19], which
is based on superposition coding, binning and rate splitting
and sharing. More specifically, for each message, one layer
of codebook is designed, i.e., layer k corresponds to Wk, for
1 ≤ k ≤ L. Within each layer, binning is employed, i.e.,
the codewords in each layer are divided into a number of
bins, where the bin number contains the information of the
corresponding message.

Furthermore, rate splitting and sharing is employed to
enlarge the achievable region. More specifically, within the
k-th layer, the message is split into two parts Wk,1,Wk,2.
The message Wk,1 serves as embedded coding which is a
random source in addition to the binning to protect Wk,2 and
the higher layer messages from the receiver with state Hk−1,
i.e., the messages Wk,2,Wk+1,1,Wk+1,2, . . . ,WL,1,WL,2 are
secured from the receiver with state Hk−1. Furthermore, the
receiver with state better than Hk−1 can also decode Wk,2

because of the degradedness condition. Thus, the message
Wk,2 satisfies both the decoding and secrecy requirements for
message Wk+1, and hence the rate of Wk,2 can be counted
towards the rate of either Wk or Wk+1. By such a rate sharing
strategy, the achievable region is enlarged.

The motivation of adding the ingredient of the rate splitting
and sharing is due to an important observation that although
those layers within the bounded range ∆ are not required to be
kept secure, partial of their rate is kept secure, and hence can
be shared with higher layer messages, which helps to enlarge
the achievable rate region. We note that such a rate splitting
and sharing strategy is critical to achieve the secrecy capacity
region for the degraded broadcast channel with secrecy outside
a bounded range in [19].

Based on such an achievable scheme, we obtain an achiev-
able region in terms of Rk,1 and Rk,2, i.e., the rate of Wk,1

and Wk,2, for 1 ≤ k ≤ L. Define Rk = Rk−1,2 + Rk,1 for
3 ≤ k ≤ K−1, R2 = R2,1 and RK = RK−1,2+RK,1+RK,2.
A novel inductive Fourier-Motzkin elimination algorithm is
designed which eliminates the rate pairs Rk−1,2 and Rk,1
for 3 ≤ k ≤ K one at each step [19]. The region Rk after
eliminating Rk−1,2 and Rk,1 possesses a common structure.
By doing this recursively, we obtain the region as shown in (8).
More details can be found in [19].

To understand how well the broadcast approach performs,
we compare its performance to an outer bound, which is
derived by considering the case with no secrecy constraints,
i.e., ∆ is infinite levels of channel quality. It is equivalent to
the fading channel without secrecy constraints as in [16], [17],
in which the average capacity can serve as an outer bound for
our problem with secrecy constraints. We also note that the
designed scheme is a variable-to-fixed coding scheme as in
[22].

We next present the result for the case in which ∆ is
arbitrary m levels of channel quality, where m ≥ 1. The
following secrecy rate region can be achieved using similar
scheme as Theorem 1. We note that when m = 1, rate splitting
and sharing is not needed anymore [20].

Theorem 2. For the fading channel with receiver has L fading
states H1, . . . ,HL, and secrecy outside m levels of channel
quality, where H1 < · · · < HL, the following secrecy ratre
tuples are achievable:

R1 ≤ log

(
1 +

|H1|2P1

|H1|2
∑L
i=2 Pi + 1

)
,

k∑
j=2

Rj ≤
k∑
j=2

log

(
1 +

|Hj |2Pj
1 + |Hj |2

∑L
i=j+1 Pi

)
,

for 2 ≤ k ≤ L, (10)
k∑
j=`

Rj ≤

 k∑
j=`−m+1

log

(
1 +

|Hj |2Pj
1 + |Hj |2

∑L
i=j+1 Pi

)
− log

(
1 +

|H`−m|2
∑k
i=`−m+1 Pi

1 + |H`−m|2
∑L
i=k+1 Pi

)
,

for m+ 1 ≤ ` ≤ k ≤ L.
(11)

B. Continuous Channel States

In this subsection, we consider the case with continuous
channel states, i.e., H can take continuous values.

It is required that the messages intended to be decoded by
the receiver if it has a better state than h0 is required to be
secure from the receiver if it has state worse than h0 by ∆,
i.e., |H| < |h0| −∆, for all |h0| ≥ ∆. For each channel state
H = h, let s = |h|2.

Motivated by the broadcast approach for the Gaussian
fading channel without secrecy constraints as in [16], the
message is divided into infinitely many layers of messages
indexed by s. For each layer s of message, the transmitter
allocates power ρ(s)ds, where ρ(s), satisfying∫ ∞

0

ρ(s)ds ≤ P,

is the power allocation function. Denote

Σ(s) =

∫ ∞
s

ρ(x)dx,

which is the power allocated to the layers of messages
intended for receiver with channel state better than s. It is
clear that ρ(s) = −Σ′(s).

It is assumed that the message indexed by s is required
to be decoded by the receiver with state |h| =

√
s and be

kept secure from the receiver with state worse than
√
s−∆.

We use R(s)ds to denote the incremental differential rate for
layer indexed by s. By the broadcast approach, the fading
channel with continuous channel states can be viewed as
a degraded broadcast channel with infinitely many receivers
with a continuum of channel states.

Similar to Theorem 2, we can obtain the following achiev-
able region.

Theorem 3. Consider the fading channel with continuous
channel states, i.e., H can take continuous values. The in-
cremental differential rate R(s)ds satisfying the following



constraints is achievable:∫ t

0

R(s)ds ≤
∫ t

0

xρ(x)dx

1 + xΣ(x)
, for t ≥ 0, (12a)∫ t2

t1

R(s)ds ≤
∫ t2

(
√
t1−∆)2

xρ(x)dx

1 + xΣ(x)

− log

(
1 +

(
√
t1 −∆)2

(
Σ((
√
t1 −∆)2)− Σ(t2)

)
1 + (

√
t1 −∆)2Σ(t2)

)
,

for ∆2 ≤ t1 ≤ t2 ≤ ∞. (12b)

To maximize the average secrecy rate, it suffices to solve
the following optimization problem:

max
ρ(s)

∫ ∞
0

p(s)ds

(∫ s

0

R(t)dt

)
, (13)

subject to the constraints in (12) and
∫∞

0
ρ(x) ≤ P , where

p(s) is the probability distribution function of s.

In order to understand how well the broadcast approach
performs, we let ∆ = ∞. Then the fading channel with
secrecy outside a bounded range is equivalent to the fading
channel without any secrecy constraint. The average capacity
in [22] and [17] can serve as an outer bound.

IV. CONCLUSION

In this paper, we studied the problem of secure communi-
cation over a fading channel with secrecy outside a bounded
range, and with no instantaneous CSI at the transmitter. By
the broadcast approach in [16], our problem can be viewed
as a degraded broadcast channel with layered decoding and
layered secrecy and with secrecy outside a bounded range.
We designed transmission schemes that are adaptive to the
actual channel state without employing the knowledge of the
CSI. We note that our designed scheme can be viewed as
variable-to-fixed coding as in [22], in which the number of
observed channel symbols (blocklength) is prespecified, but
the number of reliably recovered information bits depends on
channel conditions.

In this paper, we focused on the case with a delay
constraint. It is also of interest to study the case with a
relaxed delay constraint, i.e., coding across blocks is allowed.
Furthermore, we characterized the achievable average secrecy
rate via a broadcast approach. Although the average capacity
for the case without any secrecy constraints can serve as an
outer bound, such a bound in general is not tight since the
secrecy constraints are not taken into consideration. Therefore,
it is also worth exploiting to provide tighter outer bounds to
better understand how well the broadcast approach performs.
Moreover, extension to the MIMO setting is interesting, where
there are different ways to impose a degraded message set, and
guarantee secrecy outside a bounded range.
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